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Abstract

This paper presents an exact discrete time representation of non-stationary continuous time systems

with unequally spaced flows or a mixture of stocks and flows. The approach to obtain the exact

discrete time representation with flow variables does not depend on the continuous time parameter

matrix being non-singular, namely the underlying continuous time system may be non-stationary.

In both cases the exact discrete time representations follow a VARMA(1, 1) process with time-

varying parameters and heteroskedasticity, despite that the underlying continuous time model has

constant parameters and homoskedasticity. The time-varying parameters and the heteroskedastic

variance arise due to the variations in the sampling intervals, whereas the moving average distur-

bances arise due to the flow nature of the observations. A Monte Carlo simulation on estimation of a

cointegrated continuous time system with unequally spaced flows is conducted, aiming at assessing

estimate properties when unequal sampling intervals are correctly accounted for. Simulation evi-

dence indicates the favour of exact discrete time models accounting for the irregularity of sampling

intervals.
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1 INTRODUCTION

Estimating continuous time models based on the exact discrete time analogue has been a popular

topic in time series analysis for decades. Most research in estimations of continuous time models

assume data are observed over the same interval, which is often time normalised as unity. The

fact that some data are not observed on a regular basis has drawn some attention, for instance,

Robinson (1977) pointed out the possibility for modelling irregularly sampled time series.

Unequally spaced data can be found in a number of fields including economics and finance. A

leading example can be found in monthly data, in which observation intervals may vary with the

variation in the length of calendar months ranging from 28 days to 31 days with roughly 10 percent

difference. Unequally spaced data could also appear in financial data, such as data on trades that

take place infrequently. In addition, for daily closing price of stock exchange, weekends and public

holidays would lead to the irregularity in the sampling intervals. Such type of data could also be

obtained in other fields such as the timing of elections, which does not happen on regular basis, in

political science.

Some research has addressed the issue in estimating continuous time models with unequally spaced

data. One approach to estimate such models would be adopting state space representations. For ex-

ample, in Harvey and Stock’s research (1985) they estimate continuous time autoregressive systems

using Kalman filter recursions. Their study is further extended to allow for exogenous variables and

mixed frequency in (unequally spaced) data by Zadrozny (1988). Harvey and Stock (1993) later

provide estimation of continuous time structural time series model where data are stocks, flows or

a mixture of both that are unequally spaced. In Koopman et al (2018), they estimate continuous

time structural models via the state space approach with high frequency traffic data observed at

unequally spaced points in time.

In previous work I provide the derivation of exact discrete time representations of continuous time

systems when data are unequally spaced. Exact discrete time representations are provided in three

cases: when data are purely stock variables, purely flow variables, or mixed of both stocks and

flows. In all cases the exact discrete time representations exhibit time-varying parameters and het-

eroskedasticity. When data are purely stock variables or a mixture of stocks and flows, the exact

discrete time representations require the underlying continuous time system to be stationary. Such

restriction would limit the applications to non-stationary systems such as unit root or cointegrated
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systems.

The focus of this chapter is on providing an approach to derive exact discrete time representation

of non-stationary continuous time systems with unequally spaced flows and mixed data. The ap-

proach does not impose restrictions on the continuous time parameter matrix. The discrete time

representation is exact and is applicable to non-stationary systems as well. Despite that the un-

derlying continuous time system has constant parameters and is homoskedastic, the exact discrete

time representations, in both cases, follow a VARMA(1,1) process with time-varying parameters

and heteroskedasticity. Such a scenario arises when the continuous time system is observed at

unequally spaced intervals. Both time-varying parameters and heteroskedastic variances arise due

to the variations in the sampling intervals, whereas the moving average disturbances arise due to

the flow nature of the observations.

In the following, section 2 provides derivation of the exact discrete time representation of a contin-

uous time system where the variables are observed over unequally spaced discrete intervals. The

model considered is multivariate and includes a deterministic time trend. The discrete time repre-

sentation has time-varying parameters and heteroskedsticity. In particular, the disturbance vector

is a time-varying moving average, in which the covariance matrix is time dependent.

Section 3 considers the case where the variables of interest are a mixture of stocks and flows, in

which case the discrete time representation relies on the assumption that a sub-matrix of the con-

tinuous time parameter is non-singular (hence is invertible). This assumption, although limiting

the potential applications, for example, to systems involving zero roots, is weaker than many that

have appeared in the literature to date. The discrete time representation also has time-varying

parameters and heteroskedastic moving average disturbances.

Results of a Monte Carlo simulation study are reported in Section 4. The study considers a coin-

tegrated system of flow variables whose sampling intervals coincide with the variation of calendar

months. Simulation results indicate that estimation bias is reduced when the unequal sampling

intervals are correctly accounted for (rather than assuming all intervals are the same). Section 5

contains some concluding comments and detailed Monte Carlo simulation procedures are provided

in the Appendix.
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2 AN EXACT DISCRETE TIME MODEL WITH FLOWS

This section provides derivations of discrete time representation of a continuous model. 1 The

continuous time model is a system of first-order stochastic differential equations with flow variables

and stochastic trends.

Let x(t) be an n× 1 stochastic process generated by

dx(t) = [µ+ γt+Ax(t)]dt+ ζ(dt), t > 0, (1)

where µ and γ are n× 1 parameter vectors, A is an n× n matrix, and ζ(dt) is an n× 1 vector of

random measures satisfying:

Assumption 1.

E[ζ(dt)] = 0

E[ζ(dt)ζ(dt)′] = Σdt,

where Σ is an unknown symmetric positive definite matrix such that Σ = σ2In (with σ2 being some

random variable) and

E[ζi(∆1)ζj(∆2)
′] = 0,

for i, j = 1, 2, · · · , n; i ∕= j; and ∆1 ∩∆2 = ∅.

In what follows, it is assumed that samples are observed at the points ti (i = 1, . . . , T ) such that

0 < t1 < . . . < tT and ti = ti−1 + δi for some δi > 0 (i = 1, . . . , T ). In the case of a stock variable

the sequence of observations is of the form

x(t1), x(t2), · · · , x(tN ). (2)

Extensive use is made of the matrix exponential and various functions thereof. The matrix expo-

nential is defined as

eA =

∞󰁛

j=0

1

j!
Aj ,

1The method for deriving the exact discrete time model with flows follows the joint paper with my supervisor-

Time-Varying Parameters and Heteroskedasticity: Continuous Time Systems with Unequally-Spaced Data.
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and it is convenient to define the matrix functions

F (z) = eAz,

G(z) =

󰁝 z

0
eAsds,

H(z) =

󰁝 z

0
seAsds,

J(z) =

󰁝 z

0
G(s)ds =

󰁝 z

0

󰀕󰁝 s

0
eArdr

󰀖
ds,

K(z) =

󰁝 z

0
H(s)ds =

󰁝 z

0

󰀕󰁝 s

0
reArdr

󰀖
ds,

M(z) =

󰁝 z

0
sG(s)ds =

󰁝 z

0
s

󰀕󰁝 s

0
eArdr

󰀖
ds,

in all cases z is a known constant. In particular, when z = δi the particular matrices are defined as

Fi = F (δi), Gi = G(δi), Hi = H(δi), Ji = J(δi),Ki = K(δi),Mi = M(δi), (i = 1, . . . , T ).

In the case of unequally spaced stock variables (when x(t) is a stock variable), based on results

from Theorem 2.1 in my PhD thesis 2, the discrete time representation of (1) is obtained as

x(ti) = c0i + c1iti + Fix(ti−1) + η(ti), i = 1, . . . , T, (3)

where c0i = Giµ − Hiγ, c1i = Giγ, η(ti) =
󰁕 ti
ti−1

eA(ti−r)ζ(dr) and η(ti) satisfies E (η(ti)) =

0n×1, E (η(ti)η(tj)
′) = 0n×n for i ∕= j and E (η(ti)η(ti)

′) = Ωi =
󰁕 δi
0 eArΣeA

′rdr, i = 1, . . . , N.

The discrete time model with unequally spaced stock data generated by (1) follows a VAR(1)process.

In the discrete time model, the coefficients are time-varying and the disturbances are heteroskedastic

while the parameters in the continuous time model (equation (1)) are constant and the variance is

homoskedastic. These discrepancies are generated by the variations of the sampling intervals.

In the case of unequally spaced flow variables, the observations constitute a sequence of flow vectors

of the form

xti =

󰁝 ti

ti−1

x(r)dr =

󰁝 δi

0
x(ti − r)dr =

󰁝 δi

0
x(ti−1 + r)dr, i = 1, . . . , T. (4)

With equally spaced observations a discrete time representation can be obtained by integrating

(3) over the common observation interval. This procedure, however, is inappropriate when the

2see details in Appendix
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observations are unequally spaced due to the following reason. Integration over (ti−1, ti] will yield

xti on the left-hand-side but, on the right-hand-side,

󰁝 ti

ti−1

x(r − δi)dr =

󰁝 ti−δi

ti−1−δi

x(s)ds =

󰁝 ti−1

ti−1−δi

x(s)ds ∕= xti−1 =

󰁝 ti−1

ti−2

x(s)ds.

The problem concerns the lower limit where ti−1 − δi ∕= ti−2 = ti−1 − δi−1. The approach to derive

the discrete time representation, which is presented in the previous chapter imposes restrictions on

the matrix A to be nonsingular. This rules out applications to systems involving unit roots and

cointegration. This section provides the discrete time representation which has the advantage of not

requiring any additional conditions beyond Assumption 1. The derivation relies on the following

lemma.

Lemma 1. Gi is nonsingular for all i = 1, . . . , T .

Proof. From the series expansion of exp{As} we find that

Gi =

󰁝 δi

0
eAsds =

󰁝 δi

0

∞󰁛

j=0

Ajsj

j!
ds

=

∞󰁛

j=0

1

j!

󰀕󰁝 δi

0
sjds

󰀖
Aj

=

∞󰁛

j=0

1

j!

󰀣
δj+1
i

j + 1

󰀤
Aj

=

∞󰁛

j=0

cjA
j

where cj = δj+1
i /(j + 1)!. It is shown by Abadir and Magnus (2005, p.262) that, if Φ(A) =

󰁓∞
j=0 cjA

j , then |Φ(A)| =
󰁔n

i=1 φ(λi), where λ1, . . . ,λn are the eigenvalues of A (not necessarily

distinct) and φ(λ) =
󰁓∞

j=0 cjλ
j . The matrix Gi is clearly of the form Φ(A) and we shall demonstrate

that |Gi| ∕= 0, using the above result, and, hence, that Gi is nonsingular. Note that, if an eigenvalue

of A is zero, then φ(0) = c0 = δi whereas, for real or complex λ ∕= 0,

φ(λ) =

∞󰁛

j=0

cjλ
j =

∞󰁛

j=0

δj+1
i λj

(j + 1)!
=

1

λ

∞󰁛

j=0

δj+1
i λj+1

(j + 1)!
=

1

λ

󰁝 δiλ

0
esds

i.e. φ(λ) = (eδiλ − 1)/λ. Let there be n1 zero eigenvalues and n2 non-zero eigenvalues, where

n1 + n2 = n, ordered so that λj = 0 (j = 1, . . . , n1) and λj ∕= 0 (j = n1 + 1, . . . , n). Then

|Gi| =
n1󰁜

j=1

φ(0)

n󰁜

j=n1+1

φ(λj) = δn1
i

n󰁜

j=n1+1

(eδiλj − 1)

λj
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because φ(0) = δi. This expression can be zero only if δi = 0 or if eδiλj −1 = 0. The first possibility

is ruled out because δi > 0 and the second because δiλj ∕= 0 owing to δi > 0 and λj ∕= 0 for

j = n1 + 1, . . . , n. Hence |Gi| ∕= 0 and Gi is nonsingular as claimed. End of proof.

The invertibility of Gi is used in the derivation of the exact discrete time model; Lemma 1 shows

that no further conditions need to be imposed on the matrix A for this property to hold. The

discrete time representation is given by Theorem 1.

Theorem 1. Let x(t) be a flow variable generated by (1) which is observed as the sequence in (4).

Under Assumption 1, the observations satisfy

xt1 = m01 +G1x(0) + ξt1 ,

xti = m0i +m1iti + Φixti−1 + ξti , i = 2, . . . , T,

where m01 = ρ01 + ρ11δ1 and, for i = 2, . . . , N , Φi = GiFi−1G
−1
i−1,

m0i = ρ0i +Gi(c0,i−1 − c1,i−1δi)− Φi(ρ0,i−1 − ρ1,i−1δi),

m1i = ρ1i +Gic1,i−1 − Φiρ1,i−1,

ρ0i = Jiµ+ (Mi −Ki − Jiδi)γ

ρ1i = Jiγ.

Furthermore, ξti is a heteroskedastic MA(1) process with autocovariance matrices given by

Ω0,i = E[ξtiξ
′
ti ] =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰁝 δ1

0
G(s)ΣG(s)′ds, i = 1,

󰁝 δi

0
G(s)ΣG(s)′ds+

󰁝 δi−1

0
Γi(s)ΣΓi(s)

′ds, i = 2, . . . , T,

Ω−1,i = E[ξtiξ
′
ti−1

] =

󰁝 δi−1

0
Γi(s)ΣG(s)′ds, i = 2, . . . , T,

Ω1,i = E[ξtiξ
′
ti+1

] =

󰁝 δi

0
G(s)ΣΓi+1(s)

′ds, i = 1, . . . , T − 1,

where Γi(x) = GiF (x)− ΦiG(x).

Proof. We first derive the equations for i = 2, . . . , N and then for i = 1. (4) implies that

x(ti−1 + s) = cs + eAsx(ti−1) +

󰁝 ti−1+s

ti−1

eA(ti−1+s−r)ζ(dr), 0 < s < δi (5)

where

cs =

󰁝 ti−1+s

ti−1

eA(ti−1+s−r) (µ+ γr) dr.
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Evaluating this deterministic integral enables us to show that

cs = G(s)µ−H(s)γ +G(s)γ(ti−1 + s).

Hence integrating (5) over s ∈ (0, δi] results in

󰁝 δi

0
x(ti−1 + s)ds =

󰁝 δi

0
G(s)dsµ−

󰁝 δi

0
H(s)dsγ +

󰁝 δi

0
G(s)(ti−1 + s)dsγ

+

󰀕󰁝 δi

0
eAsds

󰀖
x(ti−1) +

󰁝 δi

0

󰁝 ti−1+s

ti−1

eA(ti−1+s−r)ζ(dr)ds.

Given that ti−1 = ti − δi, the above equation can be written as

xti = ρ0i + ρ1iti +Gix(ti−1) + eti , i = 1, . . . , T, (6)

where ρ0i = Jiµ+ (Mi −Ki − Jiδi)γ, ρ1i = Jiγ, and eti =
󰁕 δi
0

󰁕 ti−1+s
ti−1

eA(ti−1+s−r)ζ(dr)ds.

Using Lemma 1 we can solve (6) for x(ti−1):

x(ti−1) = G−1
i (xti − ρ0i − ρ1iti − eti) . (7)

But, from (3), we know that

x(ti−1) = c0,i−1 + c1,i−1ti−1 + Fi−1x(ti−2) + ηti−1 . (8)

Using (7) and its lag to substitute for x(ti−1) and x(ti−2) in (8) results in

G−1
i (xti − ρ0i − ρ1iti − eti) = c0,i−1 + c1,i−1ti−1

+Fi−1G
−1
i−1

󰀃
xti−1 − ρ0,i−1 − ρ1,i−1ti−1 − eti−1

󰀄
+ ηti−1 . (9)

Multiplying (9) by Gi, using ti−1 = ti − δi, we obtain

xti = m0i +m1iti + Φixti−1 + ξti , i = 1, . . . , T,

whereΦi = GiFi−1G
−1
i−1,m0i = ρ0i +Gi(c0,i−1 − c1,i−1δi)− Φi(ρ0,i−1 − ρ1,i−1δi),

m1i = ρ1i +Gic1,i−1 − Φiρ1,i−1 and ξti = eti − Φieti−1 +Giηti−1 . (10)

The equation for i = 1 is obtained in a similar manner; setting ti−1 = 0 in (6), and noting that

t1 = δ1, we obtain

xt1 = m01 +G1x(0) + ξt1 ,
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where m01 = ρ01 + ρ11δ1 and ξt1 = et1 .

To derive properties of the disturbances, it is necessary to reduce the double integral defining eti

to a more convenient form:

eti =

󰁝 ti

ti−1

󰀣󰁝 δi

r−ti−1

eA(ti−1+s−r)ds

󰀤
ζ(dr)

=

󰁝 ti

ti−1

󰀕󰁝 ti−r

0
eAwdw

󰀖
ζ(dr)

=

󰁝 ti

ti−1

G(ti − r)ζ(dr), i = 1, . . . , T.

Hence, using (10), for i = 2, . . . , T , ξti can be written as

ξti =

󰁝 ti

ti−1

G(ti − r)ζ(dr)− Φi

󰁝 ti−1

ti−2

G(ti−1 − r)ζ(dr) +Gi

󰁝 ti−1

ti−2

F (ti−1 − r)ζ(dr)

=

󰁝 ti

ti−1

G(ti − r)ζ(dr) +

󰁝 ti−1

ti−2

Γi(ti−1 − r)ζ(dr),

where Γi(x) = GiF (x)− ΦiG(x), while for i = 1 we have

ξt1 =

󰁝 t1

0
G(t1 − r)ζ(dr).

The autocovariances follow from these expressions. Properties of ξ are obtained as

E[ξti ] = 0, i = 1, . . . , T,

E[ξt1ξt1
′] = E

󰀗󰁝 t1

0
G(t1 − r)ζ(dr)

󰀘 󰀗󰁝 t1

0
G(t1 − r)ζ(dr)

󰀘′

=

󰁝 t1

0
G(t1 − r)ΣG(t1 − r)′dr

=

󰁝 δ1

0
G(s)ΣG(s)′ds, i = 1,

E[ξtiξti
′] = E

󰀥󰁝 ti

ti−1

G(ti − r)ζ(dr)

󰀦󰀥󰁝 ti

ti−1

G(ti − r)ζ(dr)

󰀦′

+ E

󰀥󰁝 ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

󰀦󰀥󰁝 ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

󰀦′

=

󰁝 ti

ti−1

G(ti − r)G(ti − r)′dr +

󰁝 ti−1

ti−2

Γi(ti−1 − r)ΣΓi(ti−1 − r)′dr

=

󰁝 δi

0
G(s)ΣG(s)′ds+

󰁝 δi−1

0
Γi(s)ΣΓi(s)

′ds, i = 2, . . . , T,
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E[ξtiξ
′
ti−1

] = E

󰀥󰁝 ti−1

ti−2

Γi(ti−1 − r)ζ(dr)

󰀦󰀥󰁝 ti−1

ti−2

G(ti−1 − r)ζ(dr)

󰀦′

=

󰁝 ti−1

ti−2

Γi(ti−1 − r)ΣG(ti−1 − r)′dr

=

󰁝 δi−1

0
Γi(s)ΣG(s)′ds, i = 2, . . . , T,

E[ξtiξi+1
′] = E

󰀥󰁝 ti

ti−1

G(ti − r)ζ(dr)

󰀦󰀥󰁝 ti

ti−1

Γi(ti − r)ζ(dr)

󰀦

=

󰁝 ti

ti−1

G(ti − r)ΣΓi(ti − r)′dr

=

󰁝 δi

0
G(s)ΣΓi(s)

′ds, i = 1, . . . , T − 1.

End of Proof.

Theorem 1 shows that the discrete time model with flow variables follows a VARMA(1, 1) process

with time-varying coefficients and heteroskedasticity. The heteroskedastic variances arises due to

the variations in the sampling intervals while the heteroskedastic MA(1) disturbances arise due to

the flow nature of the observations. Furthermore, Theorem 1 does not require restrictions on the

matrix A (i.e. requiring A to be nonsingular), which indicates that the results of the theorem are

applicable in nonstationary and cointegrated models as well as stationary systems. In addition,

Theorem 1 can be used when data are equally spaced, namely, when δi = 1 for all i. The advantage

of this model is that A is not required to be nonsingular, which hence does not rule out applications

to nonstationary systems.

3 AN EXACT DISCRETE TIME MODEL WITH MIXED SAM-

PLES

In this section, a system that includes both stock and flow variables is considered. The derivation

of the exact discrete time representation follows Agbeyegbe’s (1987) procedure. In the case of

mixed samples, both the stocks and flows are assumed to be observed at the same frequency (same

unequally-spaced points in time). The observations are of the form

x(ti) =

󰀵

󰀷 xs(ti)

xf (ti)

󰀶

󰀸 =

󰀵

󰀹󰀹󰀷

xs(ti)
󰁝 ti

ti−1

xf (r)dr

󰀶

󰀺󰀺󰀸 , i = 1, 2, · · · , T. (11)
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xs(ti) is a vector of (ns × 1) stock variables and xf (ti) is a vector of (nf × 1) flow variables, with

ns + nf = n. The system of stock and flow variables, generated by (1), is partitioned as

d(xs(t)) = [Assxs(t) +Asfxf (t) + µs + γst]dt+ ζs(dt), (12)

d(xf (t)) = [Afsxs(t) +Affxf (t) + µf + γf t]dt+ ζf (dt), (13)

where A =

󰀵

󰀷 Ass Asf

Afs Aff

󰀶

󰀸, µ =

󰀵

󰀷 µs

µf

󰀶

󰀸, γ =

󰀵

󰀷 γs

γf

󰀶

󰀸,and ζ(dt) =

󰀵

󰀷 ζs(dt)

ζf (dt)

󰀶

󰀸.

In order for Theorem 2 to be valid, we shall need the following assumption on the sub-matrix of A

Assumption 2. The sub-matrix Ass is non-singular.

The main challenge with mixed data is eliminating unobservable terms from the system: integrals

of stock variables,
󰁕 ti
ti−1

xs(r)dr, and the levels of flow variables, xf (ti). To derive the exact discrete

time model, it is necessary to define an (n× 1) random vector zt1 , zt2 , · · · , ztn in the form

zti =

󰀵

󰀷 xs(ti)− xs(ti−1)
󰁕 ti
ti−1

xf (r) dr

󰀶

󰀸 , i = 1, 2, · · · , T. (14)

The vector zti defined above represents a mixture of stock variables and flow variables. The exact

discrete time model for mixed data is given by Theorem 2.

Theorem 2. Let x(t) be generated by (1) which is observed as the mixed-sample sequence in (11).

Under Assumption 1 and 2, the random vectors zt1 , zt2 , · · · , ztn defined by (14) satisfy the system

zti = Πizti−1 + gi + 󰂃ti , (15)

E[󰂃ti ] = 0,

Vi = E[󰂃ti󰂃
′
ti ]

=

󰀻
󰀿

󰀽

󰁕 δ1
0 Ψ(s)ΣΨ(s)′ ds i = 1,
󰁕 δi
0 Ψ(s)ΣΨ(s)′ ds+

󰁕 δi−1

0 S(s)ΣS(s)′ ds, i = 2, · · · , T,

W−1,i = E[󰂃ti󰂃
′
t1 ] =

󰁕 δi−1

0 S(s)ΣΨ(s)′ ds i = 2, · · · , T,

Wi =
󰁕 δi
0 Ψ(s)ΣS(s)′ ds i = 1, · · · , T − 1,

12



where

Πi =

󰀵

󰀷 Πss
i Πsf

i

Πfs
i Πff

i

󰀶

󰀸 ,

gi =

󰀵

󰀷 gsi

gfi

󰀶

󰀸 ,

󰂃ti =

󰁝 ti

ti−1

Ψ(ti − r)ζ(dr) +

󰁝 ti−1

ti−2

S(ti−1 − r)ζ(dr)

=

󰀵

󰀷 󰂃sti

󰂃fti

󰀶

󰀸 ,

Πss
i = [AssΦss

i +AsfΦfs
i ][Ass]−1,

Πsf
i = [AssΦsf

i +AsfΦff
i ]−Π11

i Asf ,

Πfs
i = Φfs

i [Ass]−1,

Πff
i = Φff

i −Π21
i Asf ,

gsi = Assms
0i +Asfmf

0i + (Assms
1i +Asfmf

1i)ti +

󰁝 ti

ti−1

[µs + γsr] dr −Πss
i

󰁝 ti−1

ti−2

[µs + γsr] dr,

gfi = mf
0i +mf

1iti −Πfs
i

󰁝 ti−1

ti−2

[µs + γsr] dr,

󰂃sti =

󰁝 ti

ti−1

ζs(dr) +Assξsti +Asfξfti −Πss
i

󰁝 ti−1

ti−2

ζs(dr),

󰂃fti = ξfti −Πfs
i

󰁝 ti−1

ti−2

ζs(dr),

Ψ(ti − r) =

󰀵

󰀷 I 0

0 0

󰀶

󰀸+

󰀵

󰀷 Ass Asf

0 I

󰀶

󰀸

󰀵

󰀷 [G(ti − r)]ss [G(ti − r)]sf

[G(ti − r)]fs [G(ti − r)]ff

󰀶

󰀸 ,

S(ti−1 − r) =

󰀵

󰀷 Ass Asf

0 I

󰀶

󰀸

󰀵

󰀷 [Γi(ti−1 − r)]ss [Γi(ti−1 − r)]sf

[Γi(ti−1 − r)]fs [Γi(ti−1 − r)]ff

󰀶

󰀸−

󰀵

󰀷 Πss
i 0

Πfs
i 0

󰀶

󰀸 ,

G(ti − r) =

󰀵

󰀷 [G(ti − r)]ss [G(ti − r)]sf

[G(ti − r)]fs [G(ti − r)]ff

󰀶

󰀸 ,

13



Γi(ti−1 − r) =

󰀵

󰀷 [Γi(ti−1 − r)]ss [Γi(ti−1 − r)]sf

[Γi(ti−1 − r)]fs [Γi(ti−1 − r)]ff

󰀶

󰀸 .

Proof. Integrating (1) over the interval [ti−1, ti] obtains

x(ti)− x(ti−1) = A

󰁝 ti

ti−1

x(r) dr +

󰁝 ti

ti−1

[µ+ γr] dr +

󰁝 ti

ti−1

ζ(dr), (16)

while the first row of equation (16) is

xs(ti)− xs(ti−1) = Ass

󰁝 ti

ti−1

xs(r) dr +Asf

󰁝 ti

ti−1

xf (r) dr +

󰁝 ti

ti−1

[µs + γsr] dr +

󰁝 ti

ti−1

ζs(dr). (17)

Partitioning (10) as

󰁝 ti

ti−1

xs(r) dr = Φi
ss

󰁝 ti−1

ti−2

xs(r) dr + Φi
sf

󰁝 ti−1

ti−2

xf (r) dr +m0i
s +m1i

sti + ξti
s, (18)

󰁝 ti

ti−1

xf (r) dr = Φi
fs

󰁝 ti−1

ti−2

xs(r) dr + Φi
ff

󰁝 ti−1

ti−2

xf (r) dr +m0i
f +m1i

f ti + ξti
f , (19)

where

Φi =

󰀵

󰀷 Φi
ss Φi

sf

Φi
fs Φi

ff

󰀶

󰀸 ,

m0i =

󰀵

󰀷 m0i
s

m0i
f

󰀶

󰀸 ,

m1i =

󰀵

󰀷 m1i
s

m1i
f

󰀶

󰀸 ,

and

ξti =

󰀵

󰀷 ξti
s

ξti
f

󰀶

󰀸 .

14



Substituting out
󰁕 ti
ti−1

xs(r) dr and
󰁕 ti
ti−1

xf (r) dr in (17) by (18) and (19), respectively

xs(ti)− xs(ti−1) = [AssΦi
ss +AsfΦi

fs]

󰁝 ti−1

ti−2

xs(r) dr + [AssΦi
sf +AsfΦi

ff ]

󰁝 ti−1

ti−2

xf (r) dr

+ Assm0i
s +Asfm0i

f + [Assm1i
s +Asfm1i

f ]ti +

󰁝 ti

ti−1

[µs + γsr] dr

+ Assξti
s +Asfξti

f +

󰁝 ti

ti−1

ζs(dr). (20)

From (17) we obtain
󰁝 ti

ti−1

xs(r) dr = [Ass]−1[xs(ti)− xs(ti−1)]− [Ass]−1Asf

󰁝 ti

ti−1

xf (r) dr

− [Ass]−1

󰁝 ti

ti−1

[µs + γsr] dr − [Ass]−1

󰁝 ti

ti−1

ζs(dr). (21)

Lagging (21) for one period
󰁝 ti−1

ti−2

xs(r) dr = [Ass]−1[xs(ti−1)− xs(ti−2)]− [Ass]−1Asf

󰁝 ti−1

ti−2

xf (r) dr

− [Ass]−1

󰁝 ti−1

ti−2

[µs + γsr] dr − [Ass]−1

󰁝 ti−1

ti−2

ζs(dr). (22)

The object now is to eliminate the unobservale term,
󰁕 ti−1

ti−2
xs(r) dr in (20) and (19). Substituting

out
󰁕 ti−1

ti−2
xs(r) dr in (20) using (22)

xs(ti)− xs(ti−1) = [AssΦi
ss +AsfΦi

fs][Ass]−1

󰀫
[xs(ti−1)− xs(ti−2)]−Asf

󰁝 ti−1

ti−2

xf (r) dr

󰀬

+ [AssΦi
sf +AsfΦi

ff ]

󰁝 ti−1

ti−2

xf (r) dr +Assm0i
s +Asfm0i

f

+ [Assm1i
s +Asfm1i

f ]ti +

󰁝 ti

ti−1

[µs + γsr] dr

− [AssΦi
ss +AsfΦi

fs][Ass]−1

󰁝 ti−1

ti−2

[µs + γsr] dr

+ Assξti
s +Asfξti

f +

󰁝 ti

ti−1

ζs(dr)

− [AssΦi
ss +AsfΦi

fs][Ass]−1

󰁝 ti−1

ti−2

ζs(dr)

= Πi
ss[xs(ti−1)− xs(ti−2)] +Πi

sf

󰁝 ti−1

ti−2

xf (r) dr + gi
s + 󰂃ti

s. (23)
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Substituting out
󰁕 ti−1

ti−2
xs(r) dr in (19) using (22)

󰁝 ti

ti−1

xf (r) dr = Φi
fs[Ass]−1

󰀫
[xs(ti−1)− xs(ti−2)]−Asf

󰁝 ti−1

ti−2

xf (r) dr

󰀬

+ Φi
ff

󰁝 ti−1

ti−2

xf (r) dr +m0i
f +m1i

f ti

− Φi
fs[Ass]−1

󰁝 ti−1

ti−2

[µs + γsr] dr + ξti
f − Φi

fs[Ass]−1

󰁝 ti−1

ti−2

ζs(dr)

= Πi
fs[xs(ti−1)− xs(ti−2)] +Πi

ff

󰁝 ti−1

ti−2

xf (r) dr + gi
f + 󰂃ti

f . (24)

Combining (23) and (24) we obtain (15)
󰀵

󰀷 xs(ti)− xs(ti−1)
󰁕 ti
ti−1

xf (r) dr

󰀶

󰀸 =

󰀵

󰀷 Πss
i Πsf

i

Πfs
i Πff

i

󰀶

󰀸

󰀵

󰀷 xs(ti−1)− xs(ti−2)
󰁕 ti−1

ti−2
xf (r) dr

󰀶

󰀸+

󰀵

󰀷 gsi

gfi

󰀶

󰀸+

󰀵

󰀷 󰂃sti

󰂃fti

󰀶

󰀸 .

Properties of vector 󰂃ti depend on properties of the continuous time disturbance vector ζ(dt).

Mean of 󰂃ti :

E[󰂃ti ] = 0, i = 1, . . . , T.

Variance of 󰂃ti :

E[󰂃t1󰂃
′
t1 ] = E

󰀗󰁝 t1

0
Ψ(t1 − r)ζ(dr)

󰀘 󰀗󰁝 t1

0
Ψ(t1 − r)ζ(dr)

󰀘′

=

󰁝 t1

0
Ψ(t1 − r)ΣΨ(t1 − r)′dr

=

󰁝 δ1

0
Ψ(s)ΣΨ(s)′ds, i = 1,

E[󰂃ti󰂃
′
ti ] = E

󰀥󰁝 ti

ti−1

Ψ(ti − r)ζ(dr)

󰀦󰀥󰁝 ti

ti−1

Ψ(ti − r)ζ(dr)

󰀦′

+ E

󰀥󰁝 ti−1

ti−2

S(ti−1 − r)ζ(dr)

󰀦󰀥󰁝 ti−1

ti−2

S(ti−1 − r)ζ(dr)

󰀦′

=

󰁝 ti

ti−1

Ψ(ti − r)ΣΨ(ti − r)′ dr +

󰁝 ti−1

ti−2

S(ti−1 − r)ΣS′(ti−1 − r) dr

=

󰁝 δi

0
Ψ(s)ΣΨ(s)′ ds+

󰁝 δi−1

0
S(s)ΣS(s)′ ds, i = 2, . . . , T.
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Autocorariance of 󰂃ti :

E[󰂃ti󰂃
′
ti−1

] = E

󰀥󰁝 ti−1

ti−2

S(ti−1 − r)ζ(dr)

󰀦󰀥󰁝 ti−1

ti−2

Ψ(ti−1 − r)ζ(dr)

󰀦′

=

󰁝 ti−1

ti−2

S(ti−1 − r)ΣΨ(ti−1 − r)′dr

=

󰁝 δi−1

0
S(s)ΣΨ(s)′ ds, i = 2, . . . , T,

E[󰂃ti󰂃
′
ti+1

] = E

󰀥󰁝 ti

ti−1

Ψ(ti − r)ζ(dr)

󰀦󰀥󰁝 ti

ti−1

S(ti − r)ζ(dr)

󰀦′

=

󰁝 ti

ti−1

Ψ(ti − r)ΣS(ti − r)′dr

=

󰁝 δi

0
Ψ(s)ΣS(s)′ ds, i = 1, . . . , T − 1.

End of proof.

Theorem 2 shows that, with mixed data, the exact discrete time model follows a VARMA(1,1)

process with time-varying coefficient and disturbance vector 󰂃ti is a heteroskedastic MA(1). The

underlying continuous time model, instead, has constant parameters and homoskedastic variance.

Moreover, the autocovariances are asymmetric due to the (possibly asymmetric) variations in the

length of sampling intervals.

4 SIMULATION EVIDENCE

A Monte Carlo simulation is conducted to examine the performance of estimation of continuous

time models where unequal sampling intervals are correctly measured. This study considered

a cointegrated system of flow variables whose sampling intervals coincide with the variation of

calendar months. The lengths of monthly sampling intervals vary from 28 days to 31 days, which are

normalised by dividing each interval by 30. Note that we ignore leap years, assuming each February

has 28 days for reducing computation cost. The resulting sampling intervals are δmin = 0.93̇, 1.00

and δmax = 1.03̇. The model of interest is

dx(t) = Ax(t)dt+ ζ(dt), t > 0,
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where A =

󰀵

󰀷 α1 −α1β

α2 −α2β

󰀶

󰀸 is an n × n coefficient matrix with β = 1 and α1 − α2β < 0 and ζ(dt)

satisfy Assumption 1.

The observations are made at points ti with ti = ti−1 − δi, i = 2, · · · , T and δi denotes sample

intervals. T is the sample size and, specifically, we assume t0 = 0 and x(0) = 0 as the Boundary

Condition. In this case we have 2 variables hence n = 2.

To explore the impact of values of the parameters and sample size on the estimation results, we

compare the simulation results with α1 and α2 are -1.25 and 0.75 respectively to the results with

α1 and α2 are -0.95 and -0.05 respectively; while the sample size change from 120 (10 year span)

to 240 (20 year span). β = 1 and σ2 = 0.25 in all cases.

Using results from Theorem 2.1, the discrete time model is obtained as

xt1 = G1x(0) + ξt1 ,

xti = Φixti−1 + ξti , i = 2, . . . , T,

where properties of ξti satisfy Theorem 1. The parameters to be estimated are θ = [α1,α2,β,σ
2]′.

Estimates of θ are obtained when the Gaussian log-likelihood function is maximised.

L(θ) = −T

2
ln2π − 1

2
ln|Ω|− 1

2
ξ′Ω−1ξ,

where ξ = [ξ1
′, · · · , ξT ′]′ is an nT × 1 vector of disturbances and the nT × nT covariance matrix of

ξ is

Ω = E
󰀅
ξξ′

󰀆

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Ω0,1 Ω1,1 0 0 · · · · · · 0

Ω−1,2 Ω0,2 Ω1,2 0 · · · · · · 0

0 Ω−1,3 Ω0,3 Ω1,3 · · · · · · 0
...

...
. . .

...

0 0 · · · · · · Ω−1,T−1 Ω0,T−1 Ω1,T−1

0 0 · · · · · · 0 Ω−1,T Ω0,T

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Note that estimating the parameters, θ, by maximising the above log likelihood function may not

be convenient since inverting the matrix Ω is (computationally) costly. An alternative method

is to find the Choleskey factorization of Ω, then follow a recursive procedure that avoids directly

inverting Ω (see Bergstrom, 1985, 1990).
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Let M be the real nT ×nT lower triangular matrix with positive elements along the diagonal such

that MM ′ = Ω. Thus |Ω| = |MM ′| = |M ||M | = |M |2 and Ω−1 = (M ′)−1(M)−1. The sub-matrices

of M , M11, · · · ,Mt,t−1,Mtt(t = 2, · · · , T ) can be computed as

M11M
′
11 = Ω00,

Mi,i−1 = Ω′
1,i−1(M

′
i−1,i−1)

−1,

Mi,iM
′
i,i = Ω0,i −Mi,i−1M

′
i,i−1, i = 2, · · · , T.

Then define a normalised nT × 1 vector 󰂃, satisfying E [󰂃] = 0 and E [󰂃󰂃′] = I, such that M󰂃 = ξ.

Hence we have ξ′Ω−1ξ = ξ′(M ′)−1(M)−1ξ = 󰂃′󰂃. Then log-likelihood function can thus be evaluated

as

L =

nT󰁛

i=1

(󰂃i
2 + 2ln(mii)),

where mii is the i-th diagonal element of M .

Then ξ can be computed recursively as

ξ1 = M11󰂃1,

ξi = Mi,i−1󰂃i−1 +Mi,i󰂃i, i = 2, · · · , T.

The Gaussian estimates of θ are obtained when L is minimised. See appendix for derivation details.

With the simulated unequally-spaced data, we re-estimated the parameters using the model, which

sampling intervals are treated as equal (“equally-spaced” model) and are normalised as unity.

Namely, δ = t − (t − 1) = 1 for all observations. The estimation procedure is very similar to the

model of interest (“unequally-spaced” model). See appendix for derivations. We then compared

the estimations results from using the two models, expecting the estimates of “unequally-spaced”

model to have smaller estimation bias.

The results from 10, 000 replications in each case are presented in Table 1. The table contains

the simulation bias (calculated as estimated value minus fixed value) and standard error for each

estimator (in the parenthesis under). The estimates of α1,α2,β and σ2 are denoted by α̂1, α̂2, β̂

and σ̂2, respectively. “Model I” indicates the “unequally-spaced” model while “Model II” indicates

the “equally-spaced” model. The estimation bias for Model I estimates are smaller, in absolute
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terms, than for Model II estimates, except for estimates of σ2. The bias in estimates of σ2 is smaller

for Model II, though the standard errors of these estimates are slightly larger for Model II. The

standard errors are smaller for Model I than for Model II in all cases. Moreover, estimation bias,

for both models, get smaller with the increase in sample size. Interestingly, the bias of estimates of

β is of different signs in the 2 different parameter configurations. Overall, the results are broadly

favouring Model I, which accounts for the unequal sampling intervals, suggesting that there are

improvements in the estimate properties when the sampling intervals are correctly measured.
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Table 1: Monte Carlo Simulation Results

Parameter α1 α2 β σ2

Fixed Value −1.25 0.75 1 0.25

T = 120 Estimate α̂1 α̂2 β̂ σ̂2

Bias (Model I) −0.022 0.035 0.033 −0.127

(0.0665) (0.0762) (0.0749) (0.0006)

Bias (Model II) 0.040 0.046 0.040 −0.122

(0.0716) (0.0828) (0.0862) (0.0007)

T = 240 Bias (Model I) −0.014 0.018 0.012 −0.125

(0.0291) (0.0348) (0.0276) (0.0003)

Bias (Model II) −0.031 0.030 0.016 −0.120

(0.0316) (0.0393) (0.0339) (0.0003)

Parameter α1 α2 β σ2

Fixed Value −0.95 −0.05 1 0.25

T = 120 Estimate α̂1 α̂2 β̂ σ̂2

Bias (Model I) −0.042 0.043 −0.016 −0.122

(0.026) (0.0181) (0.0283) (0.0007)

Bias (Model II) −0.061 0.052 −0.016 −0.115

(0.0277) (0.0202) (0.0332) (0.0009)

T = 240 Bias (Model I) −0.019 0.021 −0.011 −0.123

(0.0104) (0.007) (0.0117) (0.0003)

Bias (Model II) −0.040 0.027 −0.013 −0.114

(0.0113) (0.0087) (0.0156) (0.0005)
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5 CONCLUSION

For discretizing continuous time models with unequally-spaced date, the previous chapter provides

a method, which imposes restrictions on the parameter matrix A to be nonsingular. This, how-

ever, rules out applications to nonstationary systems such as unit root and cointegrated systems.

This chapter presents an alternative method to deriving the exact discrete time representation for

continuous time models with unequally-spaced flows and mixed data. In all cases the discrete time

representations follow a VARMA(1, 1) process with time-varying parameters and heteroskedasticity,

despite that the underlying continuous time model has constant parameters and homoskedasticity.

The time-varying parameters and the heteroskedastic variance arise due to the variations in the

sampling intervals, whereas the moving average disturbances arise due to the flow nature of the

observations. The exact discrete time representation for flow variables can be applied to nonsta-

tionary systems such as unit root and cointegrated systems since it imposed no restrictions on the

matrix A; while the exact discrete time model for mixed samples requires the assumption that Ass

is nonsingular. This restriction limits the potential applications to systems involving zero roots

and cointegration between the stocks.

A Monte Carlo simulation study is conducted, aiming at examining estimates properties for the

model, which correctly measures the unequal sampling intervals. The main procedure of the study

is to simulate unequally-spaced data (monthly data) and then estimate the continuous time pa-

rameters using the exact discrete time model, which accounts for the unequal sampling intervals.

Comparing to estimations results, based on the simulated data, from using the model, which treats

sampling intervals as equal, the simulation results suggest that estimation bias is reduced when the

(unequal) sampling intervals are measured correctly.

In the Monte Carlo study, we only simulate monthly data, which presents relatively small variation

in sampling intervals. Though the simulation evidence indicates the favour of exact discrete time

models accounting for the irregularity of sampling intervals, the estimation results are close when

using different discrete time models. These relatively small estimation bias discrepancies may be

explained by the small variations in the sampling intervals. With more irregularly spaced data,

the advantage of accounting for the unequal sampling intervals could get bigger. Another poten-

tial extended work could be deriving the exact discrete time representation for mixed data, which

does not impose restriction on matrix Ass, such that the results could have broader applications of

interest. This possibly request a different method which does not require inverting matrix Ass.
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7 APPENDIX

7.1 Proof of Theorem 2.1

Consider a system of stochastic differential equations where an intercept and a deterministic time

trend are included:

dx(t) = [µ+ γt+Ax(t)]dt+ ζ(dt), t > 0, (25)

where x(t) is an (n × 1) vector of random processes, µ is an (n × 1)vector of unknown constants,

γt is an (n × 1) vector of deterministic time trend with γ being the unknown slope and A is an

(n × n) matrix of unknown coefficients. The disturbance vector, ζ(dt), is assumed to be a vector

stochastic process which has the following properties:

Assumption 2.1.

E[ζ(dt)] = 0

E[ζ(dt)ζ(dt)′] = Σdt,

where Σ is an unknown symmetric positive definite matrix and

E[ζi(∆1)ζj(∆2)
′] = 0,

for i, j = 1, 2, ..., n; i ∕= j; and ∆1 ∩∆2 = ∅.

The system (25) is loosely described as a closed-form linear system of first order stochastic differen-

tial equations. We shall consider a system that only includes stock variables x(ti) = [x1(ti), x2(ti), ..., xn(ti)]
′,

that are observed at each discrete point of time ti, with i = 1, 2, ..., T . The sample interval is defined

as δi = ti − ti−1 for i = 1, 2, ..., T , which might not be equal to unity.

The system of stock variables, based on solution to system (25) 3 , can be written as

x(ti) =

󰁝 ti

0
e(ti−r)A ζ(dr) + etiAx(0) +

󰁝 ti

0
e(ti−r)A[µ+ γr] dr, (26)

with boundary conditions x(0) = α for t0 = 0 and α is any constant vector such that at time t = 0,

the observation x(0) is pre-determined.

Given that Assumption 2.1 is satisfied, the exact discrete time representation of system (26) is

given by Theorem 2.1.

3further details can be found in Bergstrom (1983, 1984)
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Theorem 2.1. Let x(t) be generated by (25). Then, under Assumption 2.1, subject to the

boundary condition, the discrete time data satisfy

x(ti) = Fix(ti−1) + c0i + c1iti + η(ti), i = 1, ..., T. (27)

E[η(ti)] = 0,

E[η(ti)η(ti)
′] = Ωi =

󰁝 δi

0
[erAΣerA

′
]dr,

E[η(ti)η(tj)
′] = 0 for i ∕= j,

where

c0i = Giµ−Hiγ,

c1i = Giγ,

Fi = eδiA

Gi =

󰁝 δi

0
esA ds,

Hi =

󰁝 δi

0
esAs ds,

Proof of Theorem 2.1. The derivation of the exact discrete model of (26) is straightforward. By

partitioning (26)

x(ti) =

󰁝 ti−1

0
e(ti−r)A ζ(dr) +

󰁝 ti

ti−1

e(ti−r)A ζ(dr) + etiAx(0)

+

󰁝 ti−1

0
e(ti−r)A[µ+ γr] dr +

󰁝 ti

ti−1

e(ti−r)A[µ+ γr] dr

= eδiA
󰀝󰁝 ti−1

0
e(ti−1−r)A ζ(dr) + eti−1Ax(0) +

󰁝 ti−1

0
e(ti−1−r)A[µ+ γr] dr

󰀞

+

󰁝 ti

ti−1

e(ti−r)A[µ+ γr] dr +

󰁝 ti

ti−1

e(ti−r)A ζ(dr)

= eδiAx(ti−1) +

󰁝 ti

ti−1

e(ti−r)A[µ+ γr] dr +

󰁝 ti

ti−1

e(ti−r)A ζ(dr), (28)
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we obtain (27) with

ci =

󰁝 ti

ti−1

e(ti−r)A[µ+ γr] dr,

=

󰁝 δi

0
esA dsµ+

󰁝 δi

0
esA(ti − s) dsγ

=

󰁝 δi

0
esA dsµ−

󰁝 δi

0
esAs dsγ +

󰁝 δi

0
esA dsγti

= c0i + c1iti

and

η(ti) =

󰁝 ti

ti−1

e(ti−r)A ζ(dr).

The properties of the discrete time disturbance vector η(ti) are derived as follows:

The mean of vector η(ti) is obtained as

E[η(ti)] = E

󰀥󰁝 ti

ti−1

e(ti−r)A ζ(dr)

󰀦

=

󰁝 ti

ti−1

e(ti−r)AE[ζ(dr)]

= 0.

The variance of η(ti) is obtained as

E[η(ti)η(ti)
′] = E

󰀥󰁝 ti

ti−1

e(ti−r)A ζ(dr)

󰀦󰀥󰁝 ti

ti−1

e(ti−r)A ζ(dr)

󰀦′

=

󰁝 ti

ti−1

[e(ti−r)AΣe(ti−r)A′
] dr

=

󰁝 δi

0
[erAΣerA

′
]dr.

The autocovariances of η(ti) is obtained as

E[η(ti)η(tj)
′] = E

󰀥󰁝 ti

ti−1

e(ti−r)A ζ(dr)

󰀦󰀥󰁝 tj

tj−1

e(tj−r)A ζ(dr)

󰀦′

= 0,

for i ∕= j. Since i ∕= j implies δi ∕= δj , and hence [ti−1, ti] ∩ [tj−1, tj ] = ∅. End of proof.
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7.2 Cholesky factorization of the covariance matrix Ω

Let M be the real nT × nT lower triangular matrix with positive elements along the diagonal:

M =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

M11 0 0 · · · · · · 0 0

M21 M22 0 · · · · · · 0 0

0 M32 M33 · · · · · · 0 0
...

...
. . .

...

0 0 · · · · · · MT−1,T−2 MT−1,T−1 0

0 0 · · · · · · 0 MT,T−1 MT,T

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

The sub-matrices, M11, · · · ,Mt,t−1,Mtt(t = 2, · · · , T ) can be computed as

M11M
′
11 = Ω0,

M21 = Ω1(M
′
11)

−1,

M22M
′
22 = Ω0 −M21M

′
21,

...

Mt,t−1 = Ω1(M
′
t−1,t−1)

−1,

MttM
′
tt = Ω0 −Mt,t−1M

′
t,t−1, t = 2, · · · , T.

To compute M , we need to compute (elements of ) Ω; then we need to compute ξ. It is necessary

to define a normally distributed nT × 1 vector satisfying M󰂃 = ξ: Define an nT × 1 vector 󰂃 =

[󰂃′1, · · · , 󰂃′T ]′ such that M󰂃 = ξ, where E[󰂃] = 0, E[󰂃󰂃′] = InT and E[󰂃t] = 0, E[󰂃t󰂃
′
t] = In, E[󰂃t󰂃

′
s] = 0

for s ∕= t and s, t = 1, · · · , T . Therefore, ξ′Ω−1ξ = ξ′(M ′)−1M−1ξ = 󰂃′󰂃. Then ξ is computed as

ξ = M󰂃, whose procedure is given in section 4.
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7.3 Computing elements of Ω

Elements of the matrix Ω include

Ω01 =

󰁝 δ1

0
G(s)ΣG(s)′ds

=

󰁝 δ1

0

󰁝 s

0

󰁝 s

0
eArΣeA

′wdwdrds

= Ψ(δ1),

Ω1,i =

󰁝 δi

0
G(s)ΣΓ(s)′ds

=

󰀕󰁝 δi

0

󰁝 s

0
eArΣeA

′sdrds

󰀖
G′

i+1 −
󰀕󰁝 δi

0

󰁝 s

0

󰁝 s

0
eArΣeA

′wdwdrds

󰀖
Φ′
i+1,

= Λ(δi)G
′
i+1 −Ψ(δi)Φ

′
i+1,

where Λ(δi) =
󰁕 δi
0

󰁕 s
0 eArΣeA

′sdrds =
󰁕 δi
0 G(s)ΣF (s)′ds, and Ψ(δi) =

󰁕 δi
0

󰁕 s
0

󰁕 s
0 eArΣeA

′wdwdrds =
󰁕 δi
0 G(s)ΣG(s)′ds, i = 2, · · · , T in the following,

Ω−1,i =

󰁝 δi−1

0
Γi(s)ΣG(s)′ds

= GiΛ(δi−1)
′ − ΦiΨ(δi−1)

′,

Ω0,i =

󰁝 δi

0
G(s)ΣG(s)′ds+

󰁝 δi−1

0
Γi(s)ΣΓi(s)

′ds

= Ψ(δi) +GiL(δi−1)G
′
i −GiΛ(δi−1)

′Φ′
i − ΦiΛ(δi−1)G

′
i + ΦiΨ(δi−1)Φ

′
i,

where 󰀀L(δi) =
󰁕 δi
0 eAsΣeA

′sds =
󰁕 δi
0 F (s)ΣF (s)′ds.

In order to compute elements of Ω, we need to compute following matrix exponential and its

integrals:

Fi = eδiA, Gi =

󰁝 δi

0
eAsds, L(δi) =

󰁝 δi

0
eAsΣeA

′sdsds,

Λ(δi) =

󰁝 δi

0

󰁝 s

0
eArΣeA

′sdrds,Ψ(δi) =

󰁝 δi

0

󰁝 s

0

󰁝 s

0
eArΣeA

′wdwdrds.

Since the matrix A is singular, we cannot directly compute
󰁕 δi
0 eAsds = A−1(eδiA − I). The matrix

exponential, eAδi , and the integrals of the matrix exponential can be obtained from the computation
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of a 4n× 4n matrix exponential (see Van Loan, 1978; and Thornton and Chambers, 2016).

Let C be the 4n× 4n upper triangular matrix, defined by

C =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

−A I 0 0

0 −A Σ 0

0 0 A′ I

0 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
.

Then for δi 󰃍 0 for all i,

ecδi = exp

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

δi

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

−A I 0 0

0 −A Σ 0

0 0 A′ I

0 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

F1(δi) G1(δi) H1(δi) K1(δi)

0 F2(δi) G2(δi) H2(δi)

0 0 F3(δi) G3(δi)

0 0 0 F3(δi)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
,

where

F3(δi) = eA
′δi ,

G2(δi) =

󰁝 δi

0
e−A(δi−s)ΣeA

′sds

= e−Aδi

󰁝 δi

0
eAsΣeA

′sds,

G3(δi) =

󰁝 δi

0
eA(δi−s)ds,

H2(δi) = e−Aδi

󰁝 δi

0

󰁝 δs

0
eAsΣeA

′rdrds,

Therefore,

Fi = F3(δi)
′,

Gi = G3(δi),

L(δi) = F3(δi)
′G2(δi),

Λ(δi) = F3(δi)
′H2(δi),

Ψ(δi) = F3(δi)
′K1(δi) +K1(δi)

′F3(δi).
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7.4 Derivation of “equally-spaced” model

In the case of model with equally spaced flows, observations, xt, are made over equally spaced

discrete integrals, (t− 1, t), such that xt =
󰁕 t
t−1 x(r)dr, t = 1, · · · , T.

Let x(t) be an n× 1 stochastic process generated by

dx(t) = Ax(t)dt+ ζ(dt), t > 0,

where A =

󰀵

󰀷 α1 −α1β

α2 −α2β

󰀶

󰀸.

If x(t) is a stock variable, then the discrete time form of (1) obtained as

x(t) = Fx(t− 1) + η(t), t = 1, · · · , T,

where F = eAδ = eA, given that δ = 1, η(t) =
󰁕 t
t−1 e

A(t−r)ζ(dr).

If the observations are flow variables then

xt =

󰁝 t

t−1
x(r)dr =

󰁝 1

0
x(t− r)dr =

󰁝 1

0
x(t− 1 + r)dr.

From the discrete time model for stock variables we obtain

x(t− 1 + s) = eAsx(t− r) +

󰁝 t−1+s

t−1
ζ(dr).

Integrating the above equation over the interval s ∈ (0, h] obtains

󰁝 1

0
x(t− 1 + s)ds = (

󰁝 1

0
eAs)x(t− 1) +

󰁝 1

0

󰁝 t−1+s

t−1
eA(t−1+s−r)ζ(dr)ds,

which can be represented as

xt = Gx(t− 1) + et,

where G =
󰁕 1
0 eAsds, et =

󰁕 1
0

󰁕 t−1+s
t−1 eA(t−1+s−r)ζ(dr)ds =

󰁕 t
t−1G(t− r)ζ(dr), t = 1, · · · , T.

Re-arranging the above equation yields

x(t− 1) = G−1(xt − et).

Lagging the discrete time model for stocks for one period and substituting out x(t − 1) using the

above equation obtains

G−1(xt − et) = FG−1(xt−1 − et−1) + η(t− 1).
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Re-arranging the above equation obtains the reduced-form discrete time model

x1 = Φx(0) + 󰂃1,

xt = Φxt−1 + 󰂃t, t = 2, . . . , T,

where 󰂃1 = e1 =
󰁕 1
0 G(1− r)ζ(dr) with t(0) = 0 and t1 = δ = 1, 󰂃t =

󰁕 t
t−1G(t− r)ζ(dr)+

󰁕 t−1
t−2 Γ(t−

1− r)ζ(dr), t = 2, . . . , T.

Properties of the disturbances are given by

Ω0 = E[󰂃t󰂃
′
t] =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰁝 1

0
G(s)ΣG(s)′ds, t = 1,

󰁝 1

0
G(s)ΣG(s)′ds+

󰁝 1

0
Γ(s)ΣΓ(s)′ds, t = 2, . . . , T,

Ω−1 = E[󰂃t󰂃
′
t−1] =

󰁝 1

0
Γ(s)ΣG(s)′ds, t = 2, . . . , T,

Ω1 = E[󰂃t󰂃
′
t+1] =

󰁝 1

0
G(s)ΣΓ(s)′ds, t = 1, . . . , T − 1,

Furthermore, let Ω00 denote the variance when t = 1 and the we have

Ω00 =

󰁝 1

0
G(s)ΣG(s)′ds,

and the covariance matrix is

Ω = E
󰀅
󰂃󰂃′

󰀆

=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Ω00 Ω1 0 0 · · · · · · 0

Ω−1 Ω0 Ω1 0 · · · · · · 0

0 Ω−1 Ω0 Ω1 · · · · · · 0
...

...
. . .

...

0 0 · · · · · · Ω−1 Ω0 Ω1

0 0 · · · · · · 0 Ω−1 Ω0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

The simulation procedure is the same as in the “unequally-spaced” model.
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